Skip to contents

All functions

Expectation() Bias() Variance() MSE() OverestimationProbability() Coverage() SoftCoverage() Width() TestAgreement() Centrality()
Performance scores for point and interval estimators
IntervalEstimator() RepeatedCI() StagewiseCombinationFunctionOrderingCI() MLEOrderingCI() LikelihoodRatioOrderingCI() ScoreTestOrderingCI() NeymanPearsonOrderingCI() NaiveCI()
Interval estimators
NormalPrior()
Normal prior distribution for the parameter mu
PValue() LinearShiftRepeatedPValue() MLEOrderingPValue() LikelihoodRatioOrderingPValue() ScoreTestOrderingPValue() StagewiseCombinationFunctionOrderingPValue() NeymanPearsonOrderingPValue() NaivePValue()
P-values
PointEstimator() SampleMean() FirstStageSampleMean() WeightedSampleMean() AdaptivelyWeightedSampleMean() MinimizePeakVariance() BiasReduced() RaoBlackwell() PseudoRaoBlackwell() MidpointStagewiseCombinationFunctionOrderingCI() MidpointMLEOrderingCI() MidpointLikelihoodRatioOrderingCI() MidpointScoreTestOrderingCI() MidpointNeymanPearsonOrderingCI() MedianUnbiasedStagewiseCombinationFunctionOrdering() MedianUnbiasedMLEOrdering() MedianUnbiasedLikelihoodRatioOrdering() MedianUnbiasedScoreTestOrdering() MedianUnbiasedNeymanPearsonOrdering()
Point estimators
Statistic-class Statistic Statistics Estimator
Statistics and Estimators of the adestr package
TwoStageDesignWithCache()
TwoStageDesignWithCache constructor function
UniformPrior()
Uniform prior distribution for the parameter mu
adestr adestr-package
adestr
analyze()
Analyze a dataset
c(<EstimatorScoreResult>)
Combine EstimatoreScoreResult objects into a list
c(<EstimatorScoreResultList>)
Combine EstimatoreScoreResult objects into a list
c2_extrapol()
Calculate the second-stage critical value for a design with cached spline parameters
evaluate_estimator(<PointEstimatorScore>,<IntervalEstimator>) evaluate_estimator(<IntervalEstimatorScore>,<PointEstimator>) evaluate_estimator(<list>,<Estimator>) evaluate_estimator(<Expectation>,<PointEstimator>) evaluate_estimator(<Bias>,<PointEstimator>) evaluate_estimator(<Variance>,<PointEstimator>) evaluate_estimator(<MSE>,<PointEstimator>) evaluate_estimator(<OverestimationProbability>,<PointEstimator>) evaluate_estimator(<Coverage>,<IntervalEstimator>) evaluate_estimator(<SoftCoverage>,<IntervalEstimator>) evaluate_estimator(<Width>,<IntervalEstimator>) evaluate_estimator(<TestAgreement>,<IntervalEstimator>) evaluate_estimator(<TestAgreement>,<PValue>) evaluate_estimator(<Centrality>,<PointEstimator>)
Evaluate performance characteristics of an estimator
evaluate_estimator()
Evaluate performance characteristics of an estimator
evaluate_scenarios_parallel()
Evaluate different scenarios in parallel
get_example_design()
Generate an exemplary adaptive design
get_example_statistics()
Generate a list of estimators and p-values to use in examples
get_stagewise_estimators()
Conditional representations of an estimator or p-value
get_statistics_from_paper()
Generate the list of estimators and p-values that were used in the paper
n2_extrapol()
Calculate the second-stage sample size for a design with cached spline parameters
plot(<EstimatorScoreResult>)
Plot performance scores for point and interval estimators
plot(<EstimatorScoreResultList>)
Plot performance scores for point and interval estimators
plot(<list>)
Plot performance scores for point and interval estimators
plot_p()
Plot p-values and implied rejection boundaries