Skip to contents
-
Expectation() Bias() Variance() MSE() OverestimationProbability() Coverage() SoftCoverage() Width() TestAgreement() Centrality()
- Performance scores for point and interval estimators
-
IntervalEstimator() RepeatedCI() StagewiseCombinationFunctionOrderingCI() MLEOrderingCI() LikelihoodRatioOrderingCI() ScoreTestOrderingCI() NeymanPearsonOrderingCI() NaiveCI()
- Interval estimators
-
NormalPrior()
- Normal prior distribution for the parameter mu
-
PValue() LinearShiftRepeatedPValue() MLEOrderingPValue() LikelihoodRatioOrderingPValue() ScoreTestOrderingPValue() StagewiseCombinationFunctionOrderingPValue() NeymanPearsonOrderingPValue() NaivePValue()
- P-values
-
PointEstimator() SampleMean() FirstStageSampleMean() WeightedSampleMean() AdaptivelyWeightedSampleMean() MinimizePeakVariance() BiasReduced() RaoBlackwell() PseudoRaoBlackwell() MidpointStagewiseCombinationFunctionOrderingCI() MidpointMLEOrderingCI() MidpointLikelihoodRatioOrderingCI() MidpointScoreTestOrderingCI() MidpointNeymanPearsonOrderingCI() MedianUnbiasedStagewiseCombinationFunctionOrdering() MedianUnbiasedMLEOrdering() MedianUnbiasedLikelihoodRatioOrdering() MedianUnbiasedScoreTestOrdering() MedianUnbiasedNeymanPearsonOrdering()
- Point estimators
-
Statistic-class Statistic Statistics Estimator
- Statistics and Estimators of the adestr package
-
TwoStageDesignWithCache()
- TwoStageDesignWithCache constructor function
-
UniformPrior()
- Uniform prior distribution for the parameter mu
-
adestr adestr-package
- adestr
-
analyze()
- Analyze a dataset
-
c(<EstimatorScoreResult>)
- Combine EstimatoreScoreResult objects into a list
-
c(<EstimatorScoreResultList>)
- Combine EstimatoreScoreResult objects into a list
-
c2_extrapol()
- Calculate the second-stage critical value for a design with cached spline parameters
-
evaluate_estimator(<PointEstimatorScore>,<IntervalEstimator>) evaluate_estimator(<IntervalEstimatorScore>,<PointEstimator>) evaluate_estimator(<list>,<Estimator>) evaluate_estimator(<Expectation>,<PointEstimator>) evaluate_estimator(<Bias>,<PointEstimator>) evaluate_estimator(<Variance>,<PointEstimator>) evaluate_estimator(<MSE>,<PointEstimator>) evaluate_estimator(<OverestimationProbability>,<PointEstimator>) evaluate_estimator(<Coverage>,<IntervalEstimator>) evaluate_estimator(<SoftCoverage>,<IntervalEstimator>) evaluate_estimator(<Width>,<IntervalEstimator>) evaluate_estimator(<TestAgreement>,<IntervalEstimator>) evaluate_estimator(<TestAgreement>,<PValue>) evaluate_estimator(<Centrality>,<PointEstimator>)
- Evaluate performance characteristics of an estimator
-
evaluate_estimator()
- Evaluate performance characteristics of an estimator
-
evaluate_scenarios_parallel()
- Evaluate different scenarios in parallel
-
get_example_design()
- Generate an exemplary adaptive design
-
get_example_statistics()
- Generate a list of estimators and p-values to use in examples
-
get_stagewise_estimators()
- Conditional representations of an estimator or p-value
-
get_statistics_from_paper()
- Generate the list of estimators and p-values that were used in the paper
-
n2_extrapol()
- Calculate the second-stage sample size for a design with cached spline parameters
-
plot(<EstimatorScoreResult>)
- Plot performance scores for point and interval estimators
-
plot(<EstimatorScoreResultList>)
- Plot performance scores for point and interval estimators
-
plot(<list>)
- Plot performance scores for point and interval estimators
-
plot_p()
- Plot p-values and implied rejection boundaries