Performance scores for point and interval estimators
EstimatorScore-class.Rd
These classes encode various metrics which can be used to evaluate the performance characteristics of point and interval estimators.
Usage
Expectation()
Bias()
Variance()
MSE()
OverestimationProbability()
Coverage()
SoftCoverage(shrinkage = 1)
Width()
TestAgreement()
Centrality(interval = NULL)
Value
an object of class EstimatorScore
. This class signals that
an object can be used with the evaluate_estimator
function.
Details on the implemented estimators
In the following, precise definitions of the performance scores implemented
in adestr
are given. To this end,
let \(\hat{\mu}\) denote a point estimator, (\(\hat{l}\), \(\hat{u}\))
an interval estimator, denote the expected value of a random variable
by \(\mathbb{E}\), the probability of an event by \(P\),
and let \(\mu\) be the real value of the underlying
parameter to be estimated.
Scores for point estimators (PointEstimatorScore
):
Expectation()
: \(\mathbb{E}[\hat{\mu}]\)Bias()
: \(\mathbb{E}[\hat{\mu} - \mu]\)Variance()
: \(\mathbb{E}[(\hat{\mu} - \mathbb{E}[\hat{\mu}])^2]\)MSE()
: \(\mathbb{E}[(\hat{\mu} - mu)^2]\)OverestimationProbability()
: \(P(\hat{\mu} > \mu)\)Centrality(interval)
: \(\mathbb{E}[(\hat{\mu} - \hat{l}) + (\hat{\mu} - \hat{u}]\)
Scores for confidence intervals (IntervalEstimatorScore
):
Coverage()
: \(P(\hat{l} \leq \mu \leq \hat{u})\)Width()
: \(\mathbb{E}[\hat{u} - \hat{l}]\)TestAgreement()
: \(P\left( \left(\{0 < \hat{l} \text{ and } (c_{1, e} < Z_1 \text{ or } c_{2}(Z_1) < Z_2 ) \right) \text{ or } \left(\{\hat{l} \leq 0 \text{ and } ( Z_1 < c_{1, f} \text{ or } Z_2 \leq c_{2}(Z_1))\}\right)\right)\)
Examples
evaluate_estimator(
score = MSE(),
estimator = SampleMean(),
data_distribution = Normal(FALSE),
design = get_example_design(),
mu = c(0, 0.3, 0.6),
sigma = 1,
exact = FALSE
)
#> Design: TwoStageDesign<n1=28;0.8<=x1<=2.3:n2=9-40>
#> Data Distribution: Normal<single-armed>
#> Estimator: Sample mean
#> Assumed sigma: 1
#> Assumed mu: 0.0 0.3 0.6
#> Results:
#> Expectation: -0.02491922 0.30567290 0.62041636
#> Bias: -0.024919220 0.005672903 0.020416356
#> Variance: 0.02779122 0.03777824 0.02790974
#> MSE: 0.02841219 0.03781042 0.02832657
#>
evaluate_estimator(
score = Coverage(),
estimator = StagewiseCombinationFunctionOrderingCI(),
data_distribution = Normal(FALSE),
design = get_example_design(),
mu = c(0, 0.3),
sigma = 1,
exact = FALSE
)
#> Design: TwoStageDesign<n1=28;0.8<=x1<=2.3:n2=9-40>
#> Data Distribution: Normal<single-armed>
#> Estimator: SWCF ordering CI
#> Assumed sigma: 1
#> Assumed mu: 0.0 0.3
#> Results:
#> Coverage: 0.9500681 0.9499744
#>