Evaluate performance characteristics of an estimator
evaluate_estimator.Rd
This function evaluates an EstimatorScore
for a PointEstimator
or and IntervalEstimator
by integrating over the sampling distribution.
Usage
evaluate_estimator(
score,
estimator,
data_distribution,
use_full_twoarm_sampling_distribution = FALSE,
design,
true_parameter = mu,
mu,
sigma,
tol = getOption("adestr_tol_outer", default = .adestr_options[["adestr_tol_outer"]]),
maxEval = getOption("adestr_maxEval_outer", default =
.adestr_options[["adestr_maxEval_outer"]]),
absError = getOption("adestr_absError_outer", default =
.adestr_options[["adestr_absError_outer"]]),
exact = FALSE,
early_futility_part = TRUE,
continuation_part = TRUE,
early_efficacy_part = TRUE,
conditional_integral = FALSE
)
Arguments
- score
performance measure to evaluate.
- estimator
object of class
PointEstimator
,IntervalEstimator
orPValue
.- data_distribution
object of class
Normal
orStudent
.- use_full_twoarm_sampling_distribution
logical indicating whether this estimator is intended to be used with the full sampling distribution in a two-armed trial.
- design
object of class
TwoStageDesign
.- true_parameter
true value of the parameter (used e.g. when evaluating bias).
- mu
expected value of the underlying normal distribution.
- sigma
assumed standard deviation.
- tol
relative tolerance.
- maxEval
maximum number of iterations.
- absError
absolute tolerance.
- exact
logical indicating usage of exact n2 function.
- early_futility_part
include early futility part of integral.
- continuation_part
include continuation part of integral.
- early_efficacy_part
include early efficacy part of integral.
- conditional_integral
treat integral as a conditional integral.
Value
an object of class EstimatorScoreResult
containing the values of the evaluated EstimatorScore
and
information about the setting for which they were calculated
(e.g. the estimator
, data_distribution
, design
, mu
, and sigma
).
Details
General
First, a functional representation of the integrand is created by combining information
from the EstimatorScore
object (score
) and the PointEstimator
or
IntervalEstimator
object (estimator
).
The sampling distribution of a design is determined by the TwoStageDesign
object
(design
) and the DataDistribution
object (data_distribution
),
as well as the assumed parameters \(\mu\) (mu) and \(\sigma\) (sigma).
The other parameters control various details of the integration problem.
Other parameters
For a two-armed data_distribution
,
if use_full_twoarm_sampling_distribution
is TRUE
, the sample means
for both groups are integrated independently. If use_full_twoarm_sampling_distribution
is FALSE
, only the difference in sample means is integrated.
true_parameter
controls which parameters is supposed to be estimated. This
is usually mu
, but could be set to sigma
if one is interested in
estimating the standard deviation.
If the parameter exact
is set to FALSE
(the default), the continuous version of the second-stage sample-size function n2
is used. Otherwise, an integer valued version of that function will be used,
though this is considerably slower.
The parameters early_futility_part
,
continuation_part
and early_efficacy_part
control which parts
of the sample-space should be integrated over (all default to TRUE
).
They can be used in conjunction with the parameter conditional_integral
,
which enables the calculation of the expected value of performance score conditional
on reaching any of the selected integration regions.
Lastly, the paramters
tol
, maxEval
, and absError
control the integration accuracy.
They are handed down to the hcubature
function.
Examples
evaluate_estimator(
score = MSE(),
estimator = SampleMean(),
data_distribution = Normal(FALSE),
design = get_example_design(),
mu = c(0, 0.3, 0.6),
sigma = 1,
exact = FALSE
)
#> Design: TwoStageDesign<n1=28;0.8<=x1<=2.3:n2=9-40>
#> Data Distribution: Normal<single-armed>
#> Estimator: Sample mean
#> Assumed sigma: 1
#> Assumed mu: 0.0 0.3 0.6
#> Results:
#> Expectation: -0.02491922 0.30567290 0.62041636
#> Bias: -0.024919220 0.005672903 0.020416356
#> Variance: 0.02779122 0.03777824 0.02790974
#> MSE: 0.02841219 0.03781042 0.02832657
#>
evaluate_estimator(
score = Coverage(),
estimator = StagewiseCombinationFunctionOrderingCI(),
data_distribution = Normal(FALSE),
design = get_example_design(),
mu = c(0, 0.3),
sigma = 1,
exact = FALSE
)
#> Design: TwoStageDesign<n1=28;0.8<=x1<=2.3:n2=9-40>
#> Data Distribution: Normal<single-armed>
#> Estimator: SWCF ordering CI
#> Assumed sigma: 1
#> Assumed mu: 0.0 0.3
#> Results:
#> Coverage: 0.9500681 0.9499744
#>