Analyze a dataset
analyze.Rd
The analyze
function can be used calculate the values of a list of
point estimators,
confidence intervals,
and p-values for a given dataset.
Usage
analyze(
data,
statistics = list(),
data_distribution,
use_full_twoarm_sampling_distribution = FALSE,
design,
sigma,
exact = FALSE
)
# S4 method for class 'data.frame'
analyze(
data,
statistics = list(),
data_distribution,
use_full_twoarm_sampling_distribution = FALSE,
design,
sigma,
exact = FALSE
)
Arguments
- data
a data.frame containing the data to be analyzed.
- statistics
a list of objects of class
PointEstimator
,ConfidenceInterval
orPValue
.- data_distribution
object of class
Normal
orStudent
.- use_full_twoarm_sampling_distribution
logical indicating whether this estimator is intended to be used with the full sampling distribution in a two-armed trial.
- design
object of class
TwoStageDesign
.- sigma
assumed standard deviation.
- exact
logical indicating usage of exact n2 function.
Details
Note that in adestr
, statistics are codes as functions of the
stage-wise sample means (and stage-wise sample variances if data_distribution is
Student
). In a first-step, the data is summarized to produce these
parameters. Then, the list of statistics are evaluated at the values of these parameters.
The output of the analyze
function also displays information on the hypothesis
test and the interim decision. If the statistics
list is empty, this will
be the only information displayed.
Examples
set.seed(123)
dat <- data.frame(
endpoint = c(rnorm(28, 0.3)),
stage = rep(1, 28)
)
analyze(data = dat,
statistics = list(),
data_distribution = Normal(FALSE),
design = get_example_design(),
sigma = 1)
#> Design: TwoStageDesign<n1=28;0.8<=x1<=2.3:n2=9-40>
#> Data Distribution: Normal<single-armed>
#> Observed number of stages: 1
#> Observed n1 (total) 28
#> Z1 1.3
#> Interim decision: continue to second stage
#> Calculated n2(Z1) (per group) 32.21129
#> Calculated c2(Z1) 1.71
#>
# The results suggest recruiting 32 patients for the second stage
dat <- rbind(
dat,
data.frame(
endpoint = rnorm(32, mean = 0.3),
stage = rep(2, 32)))
analyze(data = dat,
statistics = get_example_statistics(),
data_distribution = Normal(FALSE),
design = get_example_design(),
sigma = 1)
#> Design: TwoStageDesign<n1=28;0.8<=x1<=2.3:n2=9-40>
#> Data Distribution: Normal<single-armed>
#> Observed number of stages: 2
#> Observed n1 (total) 28
#> Z1 1.3
#> Interim decision: continue to second stage
#> Calculated n2(Z1) (per group) 32.21129
#> Calculated c2(Z1) 1.71
#> Observed n2 (in total) 32
#> Z2 2.66
#> Final test decision: reject null
#>
#> Stage 2 results:
#> Sample mean: 0.3656173
#> Pseudo Rao-Blackwellized: 0.3135628
#> Median unbiased (LR test ordering): 0.3420742
#> Bias reduced MLE (iterations=1): 0.357214
#> SWCF ordering CI: [0.04664821, 0.6142449]
#> LR test ordering CI: [0.08992822, 0.6106096]
#> SWCF ordering p-value: 0.01321363
#> LR test ordering p-value: 0.003551316
#>