
Chapter 1

Numerical considerations

1.1 Introduction

1.1.1 A preliminary note

In this vignette, we carefully follow the work of Philippe Rigollet and Jonathan
Weed in their paper [6]. We explore the computational estimator they propose
in section 2.2 of their paper and reiterate some of their findings, aswell as give
some new insights.

Also note that some parts in this document don’t have enough context to
be comprehensible - this is a preliminary version and is merely lazily copied
together from my master’s thesis.

1.1.2 Setting and basic notation

In our setting, we assume the data to be modeled by the equation

Yi = m(Xi) + εi

for i = 1, ..., n, where m : [0, 1] → [−V, V ] is an unknown, non-decreasing
function. We do not make any continuity assumptions onm, however, we assume
that V > 1 is known and finite.

We observe the data in the form of multisets {X1, ..., Xn} and {Y1, ..., Yn}.
Data is observed in an unordered manner, i.e., we cannot tell which value Xi

belongs to which value Yi. The design points {X1, ..., Xn} are assumed to be
non-random and fixed.

We assume that the error variables ε1, ..., εn are independent, identically
distributed and sub-exponential.

The class of non-decreasing functions from [0, 1] to [−V, V ] will be referred
to as FV .
For a function f , we will denote by πf the pushforward of the empirical measure
on {X1, ..., Xn} through f , i.e.,

πf := f∗

(
1

n

n∑

i=1

δXi

)
=

1

n

n∑

i=1

δf(Xi).
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The symbol π̂ will be reserved for the empirical measure on our multiset of
observations {Y1, ..., Yn}, i.e.,

π̂ :=
1

n

n∑

i=1

δYi .

In two-dimensional settings, π1 and π2 will refer to the projection maps on the
first or second component, respectively.
We will frequently refer to a collection of constants as C, where C might change
from line to line.
The symbol D will typically refer to some distribution that is known but not
explicitly specified.
The terms “Bernoulli noise” or the symbol Ber will always refer to random
variables with P(X = −1) = P(X = 1) = 1

2 . We realize that this is non-standard
terminology, as usually, one would expect to have P(X = 0) = P(X = 1) = 1

2
(or, more generally, some non-symmetric version). However, with our definition,
the distribution has a variance of 1. Furthermore, as will be pointed out in the
following section, isotonic regression problems for non-centered noise can always
be rewritten in a form with centered noise.

Definition 1.1.1. We call

m̂ ∈ argmin
g∈FV

W1(πg ∗ D, π̂)

a minimum Wasserstein deconvolution estimator. [6]

Theorem 1.1.1. Let µ, ν be probability measures on B(R) with inverse distri-
bution functions F−1 and G−1, respectively. If µ and ν have finite p-th moment,
then

W p
p (µ, ν) =

∫ 1

0

|F−1(x)−G−1(x)|p dx.

1.1.3 Some preliminary propositions and lemmata

Theorem 1.1.2. Let µ, ν be probability measures on B(R) with inverse distri-
bution functions F−1 and G−1, respectively. If µ and ν have finite p-th moment,
then

W p
p (µ, ν) =

∫ 1

0

|F−1(x)−G−1(x)|p dx.

Lemma 1.1.3. Let µ, ν and ρ be Borel-measures with finite p-th moment. It
holds that

Wp(µ, ν) ≤Wp(µ, ρ) + Wp(ρ, ν).

Lemma 1.1.4. With µ, ν as in Theorem 1.1.2, it holds that

W1(µ ∗ Ber, ν ∗ Ber) ≤W1(µ, ν).

Theorem 1.1.5. The estimator defined in Definition 1.1.1 fulfills the inequality

sup
m∈FV

(
E‖m− m̂‖pp

)1/p ≤ Cp log log n

log n

for all 1 ≤ p <∞ and n ≥ max{4V 2, ee}.
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Proposition 1.1.6. The estimator defined in Definition 1.1.1 fulfills the in-
equality

sup
m∈FV

(
E‖m− m̂‖pp

)1/p ≤
(

(2V )p−1(V + 1)(4V + 2)√
n

)1/p

for all p ≥ 1.

Proposition 1.1.7. Let MV be the space of probability measures supported on
[−V, V ]. The map

Wp
p(·, ν) : MV → R

µ 7→Wp(·, ν)

is convex.

1.2 A computationally efficient variation of the
estimator

1.2.1 First steps

For a generic noise distribution D, the problem of calculating an explicit m̂ that
fulfills

m̂ ∈ argmin
g∈FV

Wp(πg ∗ D, π̂)

does not seem easily approachable via numerical methods at first. Luckily for
us, though, Rigollet and Weed show that solutions to a discretized variation of
the minimization problem are sufficiently close to solutions of the original prob-
lem. We will now examine the problems one faces when trying to calculate m̂
for a generic distribution D and see if those problems are present in our special
case D = Ber.

First off all, there is some nuisance associated with handling measures of the
form πg =

∑n
i=1

1
n1g(Xi). Put a1 := g(X1), ..., an := g(Xn), and consider the

cumulative distribution function of πg. By changing the values of the ai, one
controls where the 1

n jumps are in the cumulative distribution function.
Our goal is to work in a slightly different setting: We want to fix the val-
ues of the ai, and instead control the magnitudes of the jumps in the cu-
mulative distribution function. Instead of considering measures of the form
πg =

∑n
i=1

1
n1g(Xi) where we control the value of g(Xi), we consider measures

of the form µ =
∑N
i=1 µi1ai where we control the values of the µi and fix ai

beforehand.
One advantage of this approach is immediately obvious: We can freely choose
the number of ai’s, i.e., we can choose N . Since the calculations that will follow
can get quite resource-intensive, the ability to reduce the dimension of the space
where we search for solutions will turn out to be very useful.
Put A := {a1, ..., aN} as an equidistant set and let µ be supported on A. The
remaining problems all depend on the nature of D. If D is not discrete, µ ∗ D
will not be discrete. If D has unbounded support, µ ∗ D will have unbounded
support. Neither of those problems concerns our case D = Ber, though it is still
interesting to see how this can be handled in the general case.
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1.2.2 The new estimator

Let A = {a1, ..., aN} be a discrete, equidistant set with a1 ≤ −V , aN ≥ V and
ai < aj for i < j, where N is some function of n. Denote by ΠA the projection
that maps each point in R to its nearest neighbor in A, i.e.,

ΠA : R→ A

x 7→





a1 if x ≤ a1+a2
2 ,

ai if ai−1+ai
2 < x ≤ ai+ai+1

2 , i = 2, ..., N − 1,

aN if aN−1+aN
2 < x.

Let MV be the class of all Borel-measures supported on [−V, V ], and MA,V be
the class of all Borel-measures supported on AV := [−V, V ]∩A. For continuous
noise distributions D, take

µ̂ ∈ argmin
µ∈MA,V

W1(ΠA
∗ (µ ∗ D), π̂), (1.1)

where ΠA
∗ (µ ∗ D) denotes the push-forward of µ ∗ D through ΠA

∗ . For discrete
noise distributions D, it is sufficient to choose

µ̂ ∈ argmin
µ∈MA,V

W1(µ ∗ D, π̂).

Put

ĝ(xi) = F−1

(
i

n

)
, i = 1, ..., n, (1.2)

where F−1 denotes the inverse distribution function of µ̂.

The goal now is to show that E[Wp(πĝ ∗D, π̂)] is close to E[Wp(πm̂ ∗D, π̂)].
A proof for the general case can be found in [6, Proposition 2].

Of the two problems mentioned in the introduction, we’ve already seen how
non-discreteness of D can be circumvented: By pushing µ ∗ D through ΠA, we
again end up with a discrete measure.
For sub-exponential D with unbounded support, Rigollet and Weed show that
is suffices to choose A in a clever way to handle this obstacle: They choose
A = {a1, ..., aN}, such that with increasing N , the distance between individual
elements gets smaller, but the overall “width” of A is unbounded and of order
log(n). Details can be found in [6, chapter 2.2].

1.2.3 A proof for D = Ber

We will show that

W1(πĝ ∗ Ber, π̂) ≤W1(πm̂ ∗ Ber, π̂) +
C√
n
,

which gives us that
sup
m∈FV

E‖m− ĝ‖1
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converges with the same rate as

sup
m∈FV

E‖m− m̂‖1.

To this end, we need to prove some lemmata. We assume that A is an equidistant
set on [−V − 1, V + 1] with N = d√ne. The following lemma is the bounded
support equivalent to [6, Lemmata 5 & 6]:

Lemma 1.2.1. Let ν be a Borel-measure supported on [−V − 1, V + 1]. Then,
for

ν′ := ΠA
∗ (ν)

it holds that

W1(ν, ν′) ≤ V + 1√
n− 1

.

Proof. Put

γ :=

N∑

i=1

ν
∣∣∣
Ai
× δ{ai},

where we put Ai =
(
ΠA
)−1

({ai}) for i = 1, ..., N , i.e. the Ai are the disjoint
subsets of [−V − 1, V + 1] that are projected onto the respective values ai
by ΠA. Clearly, γ is a coupling between ν and ν′. Because A is equidistant
on [−V − 1, V + 1], the maximum distance between points from Ai and the
corresponding ai is 2V+2

2(N−1) ≤ V+1√
n−1

. Thus,

W1(ν, ν′) ≤
∫
|x− y|dγ ≤

∫
V + 1√
n− 1

dγ =
V + 1√
n− 1

.

The next result corresponds to [6, Lemma 7].

Lemma 1.2.2. Let µ be supported on [−V, V ] with inverse distribution function
F−1, and let g ∈ FV satisfy

g(Xi) = F−1

(
i

n

)
.

Then,

W1(µ, πg) ≤
2V

n
.

Proof. Denote by G−1 the inverse distribution function of πg. By definition of
πg we have

G−1(x) = F−1

(
i

n

)
for

i− 1

n
< x ≤ i

n
.
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Thus, by Theorem 1.1.2, it holds that

W1(µ, πg) =

∫ ∣∣F−1(x)−G−1(x)
∣∣dx

=
n∑

i=1

∫ i/n

(i−1)/n

∣∣F−1(x)−G−1(x)
∣∣ dx

=
n∑

i=1

∫ i/n

(i−1)/n

∣∣∣∣F−1(x)− F−1

(
i

n

)∣∣∣∣ dx

≤
n∑

i=1

∫ i/n

(i−1)/n

∣∣∣∣F−1

(
i− 1

n

)
− F−1

(
i

n

)∣∣∣∣ dx

=

n∑

i=1

1

n

(
F−1

(
i

n

)
− F−1

(
i− 1

n

))

teleskope
=

1

n

(
F−1 (1)− F−1 (0)

)

≤ 2V

n
.

Similarly to [6, Proposition 2], one can use the previously established bounds
to show the following proposition:

Proposition 1.2.3. The estimator from equation 1.2 fulfills the equation

W1(πĝ ∗ Ber, π̂) ≤W1(πm̂ ∗ Ber, π̂) +
C√
n

for some C > 0.

Proof. The claimed inequality can be achieved by multiple applications of the
triangle inequality (prop. 1.1.3) and the previous lemmata.
Denote by µ̂ the estimator defined in 1.1, define

ν̂ := argmin
ν∈MV

W1(ν ∗ Ber, π̂)

and put ν̂′ := ΠA
∗ (ν).

By the triangle inequality,

W1(πĝ ∗ Ber, π̂) ≤W1(µ̂ ∗ Ber, π̂) + W1(πĝ ∗ Ber, µ̂ ∗ Ber).

By Lemma 1.1.4,

W1(µ̂ ∗ Ber, π̂) + W1(πĝ ∗ Ber, µ̂ ∗ Ber) ≤W1(µ̂ ∗ Ber, π̂) + W1(πĝ, µ̂),

and by Lemma 1.2.2,

W1(µ̂ ∗ Ber, π̂) + W1(πĝ, µ̂) ≤W1(µ̂ ∗ Ber, π̂) +
C

n
.

By the triangle inequality,

W1(µ̂ ∗ Ber, π̂) ≤W1(ΠA
∗ (µ̂ ∗ Ber), π̂) + W1(ΠA

∗ (µ̂ ∗ Ber), µ̂ ∗ Ber).
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By Lemma 1.2.1,

W1(ΠA
∗ (µ̂ ∗ Ber), π̂) + W1(ΠA

∗ (µ̂ ∗ Ber), µ̂ ∗ Ber) ≤W1(ΠA
∗ (µ̂ ∗ Ber), π̂) +

C√
n
.

By optimality of µ̂,

W1(ΠA
∗ (µ̂ ∗ Ber), π̂) ≤W1(ΠA

∗ (ν̂′ ∗ Ber), π̂),

and by the triangle inequality,

W1(ΠA
∗ (ν̂′ ∗ Ber), π̂) ≤W1(ν̂′ ∗ Ber, π̂) + W1(ΠA

∗ (ν̂′ ∗ Ber), ν̂′ ∗ Ber).

By Lemma 1.2.1,

W1(ν̂′ ∗ Ber, π̂) + W1(ΠA
∗ (ν̂′ ∗ Ber), ν̂′ ∗ Ber) ≤W1(ν̂′ ∗ Ber, π̂) +

C√
n
.

By the triangle inequality,

W1(ν̂′ ∗ Ber, π̂) ≤W1(ν̂ ∗ Ber, π̂) + W1(ν̂′ ∗ Ber, ν̂ ∗ Ber)

by Lemma 1.1.4,

W1(ν̂ ∗ Ber, π̂) + W1(ν̂′ ∗ Ber, ν̂ ∗ Ber) ≤W1(ν̂ ∗ Ber, π̂) + W1(ν̂′, ν̂)

and by Lemma 1.2.1 / definition of ν̂′,

W1(ν̂ ∗ Ber, π̂) + W1(ν̂′, ν̂) ≤W1(ν̂ ∗ Ber, π̂) +
C√
n
.

Finally, by optimality of ν̂, we have

W1(ν̂ ∗ Ber, π̂) ≤W1(πf̂ ∗ Ber, π̂),

and thus overall

W1(πĝ ∗ Ber, π̂) ≤W1(πf̂ ∗ Ber, π̂) +
C√
n
,

where C ≤ 2V√
n

+ 3 (V+1)
√
n√

n−1
.

Remark 1.2.4. By replacing m̂ with ĝ in the proofs of Theorem 1.1.5 or Propo-
sition 1.1.6, one easily gets the same bounds of convergence for ĝ as we have
for m̂. The first objective in these proofs is bounding W(ĝ, π̂) by W(ĝ ∗Ber, π̂),
which in fact does not use any properties of ĝ at all. At that point, we can
use Proposition 1.2.3 to bound W(ĝ ∗ Ber, π̂) by W(πm̂ ∗ Ber, π̂), which lets us
continue as before.

1.3 Details on minimizing the objective function

In this section, we will examine the different steps needed to actually produce a
working program that calculates the minimum Wasserstein estimator. We will
do this for the general case where D is not necessarily a Bernoulli distribution.
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We denote the measure associated with D by PD.

Suppose A = {a1, ..., aN} is an equidistant set and put AV := A ∩ V =
{aV1 , ..., aVK}. Consider the following calculation, where h = a2−a1

2 and j ∈ {2, ..., N − 1}:

ΠA(µ ∗ D)({aj}) =

∫ ∫
1(aj−h,aj+h](x+ y) dPD(x) dµ(y)

=

∫ ∫ aj+h−y

aj−h−y
dPD(x) dµ(y)

=

∫
PD(aj − h− y, aj + h− y] dµ(y)

=

K∑

i=1

µ({aVi })PD(aj − h− ai, aj + h− ai].

For j = 1, this reads

ΠA(µ ∗ D)({aj}) =

∫ ∫
1(−∞,aj+h](x+ y) dPD(x) dµ(y)

=
K∑

i=1

µ({aVi })PD(−∞, aj + h− ai],

and for j = N this reads

ΠA(µ ∗ D)({aj}) =

∫ ∫
1(aj−h,∞)(x+ y) dPD(x) dµ(y)

=
K∑

i=1

µ({aVi })PD(aj − h− ai,∞).

Defining

µ̄ :=



µ({a1})

...
µ({aK})




offers the convenient representation



ΠA(µ ∗ D)({a1})
...

ΠA(µ ∗ D)({aK})


 = PD · µ̄,

where PD
i,j

= PD(aj−h−ai, aj+h−ai] for j = 2, ..., N−1, PD
i,j

= PD(−∞, aj+
h − ai] for j = 1 and PD

i,j
= PD(aj − h − ai,∞) for j = N . This is where it

becomes very advantageous to have fixed {a1, ..., aN}: The N ×K-matrix PD
does not depend on µ, and we can consider PD · µ̄ as a (linear and therefore)
differentiable function of µ̄ ∈ ∆N−1, where ∆N−1 := {(x1, ..., xN ) ∈ RN :∑N
i=1 xi = 1, xi ≥ 0} denotes the probability simplex. If we now identify




ΠA(µ ∗ D)({a1})
...

ΠA(µ ∗ D)({aK})
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with the measure ΠA(µ ∗ D), we can, by extension, consider

W1(PDµ̄, π̂) := W1(ΠA(µ ∗ D), π̂)

as a function of µ̄. We have reformulated the problem of finding

argmin
µ∈MA,V

W1(ΠA
∗ (µ ∗ D), π̂)

to finding
argmin
µ̄∈∆N−1

W1(PDµ̄, π̂).

It is straightforward to see that this is a convex problem: First of all, ∆N−1

is convex. By Proposition 1.1.7, µ̄ 7→W1(µ̄, ν) is convex. The composition of a
convex function with an affine function is still convex (see e.g. [1]), thus

µ̄ 7→W1(PDµ̄, π̂)

is convex.

Rigollet and Weed claim “subgradients [of this map] can be obtained by
standard methods in computational optimal transport [5]”, though we struggle
to see what precisely is meant by that.
The approach we chose is the following: Instead of trying to solve the minimiza-
tion problem

argmin
µ̄∈∆N−1

W1(PDµ̄, π̂),

we try to solve an entropically regularized approximation of that problem. The
details for this approach are established by Peyré and Cuturi in [5].

For two discrete measures µ =
∑N
i=1 uiδXi and ν =

∑n
j=1 vjδYi , a coupling

between µ and ν can be represented as a matrix γ = (γi,j)i=1,...,N ;j=1,...,n. For
such a matrix, define

H(γ) := −
∑

i,j

γi,j(log(γi,j)− 1).

We define the the entropically regularized Wasserstein distance between µ and
ν as

Lεp(µ, ν) := min
γ∈Γ(µ,ν)

∫
|x− y|p dγ − εH(γ)

= min
γ∈Γ(µ,ν)

∑

i,j

γi,j [|xi − yj |p − ε(log(γi,j)− 1)] .

For the remainder of this segment, we will consider the support of µ and ν to
be fixed, i.e., (X1, ..., XN ) and (Y1, ..., Yn) are considered fixed and we consider
µ = µu and ν = νu to be functions of the weight vectors (u1, ..., uN ) ∈ ∆N−1

and (v1, ..., vn) ∈ ∆n−1. This in turn lets us consider Lεp(µ
u, νv) as a function

of u and v.
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In [5, Proposition 4.1] it is shown that

Lεp(µ
u, νv)

ε→0→ Wp
p(µ

u, νv),

and since ∆N−1×∆n−1 is compact, this convergence is uniform on that domain.
In [5, Proposition 4.6], Peyré and Cuturi give a formula for the gradient of Lεp at
(µu, νv) (i.e., a gradient with respect to u and v, since we consider the support
of µ and ν fixed). In [5, Remark 4.20], they display an iterative algorithm to
simultaneously calculate the value and the gradient of Lεp(·, ·) at a point (µu, νv),
the Sinkhorn algorithm.
Putting νv := π̂, an application of the chain rule gives us

∇TL2 (ΠA(µ ∗ D), π̂) =
(
∇TL2(·, π̂)

) ∣∣∣
PDµ̄
· PD.

Our practical approach for minimizing Lε1(PD ·, π̂) is to apply a gradient descent
approach leveraging the aforementioned formula. This can be summed up in
the following algorithm:

Input :
Observat ions Y = (Y1, ..., Yn) .
Noise d i s t r i b u t i o n D .

Ca lu la te s t a r t i n g parameters :
Choose s u i t a b l e domain A = {a1, ..., aN} ( depends on D ) .

Put µ̄c = ( 1
K , ...,

1
K ) .

Put π̂ = ( 1
n , ...,

1
n ) .

Put γ = 1 .

Ca l cu la te PD .
Ca l cu la t e C = (Ci,j)i=1,...,N ;j=1,...,n with Ci,j = |Xi − Yj | .
Choose ε = smal l .
Put K = exp(εC) [ exp component=wise , not matrix=exponent i a l ]

Repeat :

Do Sinkhorn a lgor i thm at (PDµ̄c, ν) with matrix K .

Use output to update Lε1(PDµ̄c, π̂) and ∇Lε1(·, π̂)
∣∣∣
PDµ̄c

.

Update γ .
Update µ̄l = µ̄c

Update ∇L2(·, π̂)
∣∣∣
PDµ̄l

= ∇L2(·, π̂)
∣∣∣
PDµ̄c

Update µ̄c = µ̄c − γ
(
PD

T∇L2(·, π̂)
∣∣∣
PDµ̄c

)
.

Pro j e c t µ̄c back onto p r o b a b i l i t y s implex .

Unt i l c a n c e l a t i o n c r i t e r i o n dependent on Lε1(PDµ̄c, π̂) .

Output :
µ̄l .

There are several common numerical ways to update γ, e.g. the Barzilai–Borwein
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[2] method:

γ =

∣∣∣∣
(
∇TL1(·, π̂)

∣∣∣
PDµ̄c

−∇TL1(·, π̂)
∣∣∣
PDµ̄l

)
PD · (µ̄c − µ̄l)

∣∣∣∣
∣∣∣
∣∣∣
(
∇TL1(·, π̂)

∣∣∣
PDµ̄c

−∇TL1(·, π̂)
∣∣∣
PDµ̄l

)
PD
∣∣∣
∣∣∣
2

2

.

This obviously only works from the second step onward, as one needs both µ̄c
and µ̄l (indices c and l denote “current step” and “last step”).

As a convergence criterion, one could choose that consecutive values of Lε1
are sufficiently close, i.e.,

‖Lε1(PDµ̄c, π̂)− Lε1(PDµ̄l, π̂)‖ ≤ tolerance.

For two vectors a, b and a matrix K, the Sinkhorn algorithm in its simplest
form, as described in [5, p. 63], reads

Input :
Vectors a , b .
Matrix K.
Regu l a r i z a t i on constant ε .

S ta r t parameters :
v = (1, .., 1) , same length as b .

Repeat :
u = a

Kv [ d i v i s i o n i s component=wise ]

v = b
KTu

Unt i l : ||diag(u)Kv − a|| and ||diag(v)KTu− b|| are smal l .

Output :
Gradients f = ε log(u) and g = ε log(v) .

Value Lε1 =< f, a > + < g, b > −εuTKv .

We also implemented a variation of this algorithm from [5, Remark 4.21] that
is better conditioned, but unfortunately also noticeably slower.

Due to constraints on calculation time, the gradients obtained via the Sinkhorn
algorithm are generally not very exact. Therefore, µ̄ is generally not on the
probability simplex anymore after being updated. We deal with this problem
by projecting µ̄ back onto the probability simplex after every update. There are
a few possible ways to do that, and we choose to do a least-squares projection
on the probability simplex. To this end, we employ an implementation from
Fritz Schelten’s bachelor thesis [7] of an algorithm proposed by Laurent Condat
[3].

Finally one has to recover a monotone function from µ̄l = (µ̄1, ..., µ̄K). As
mentioned in Lemma 1.2.2, this can be achieved by putting

ĝ(Xi) = aVki , ki := min{k :
k∑

j=1

µ̄j ≥ i

n
}.
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We conclude this section with a final note on the convergence of the gradient
descent method. Common assumptions on the objective function that guaran-
tee the convergence of the gradient descent method to a global minimum are
convexity and Lipschitz continuity of the first derivative [4]. Clearly,

∑

i,j

γi,j [|xi − yj |p − ε(log(γi,j)− 1)]

is convex with respect to γ, since log is concave, which ensures that finding

argmin
γ∈Γ(µ,ν)

∑

i,j

γi,j [|xi − yj |p − ε(log(γi,j)− 1)]

is a convex problem. In [5, Proposition 4.6.] it is stated, that

Lε1(µu, νv) = min
γ∈Γ(µ,ν)

∑

i,j

γi,j [|xi − yj |p − ε(log(γi,j)− 1)]

is also convex with respect to u and v. We are not sure whether its gradient is
Lipschitz.

1.4 Heuristic estimation by value-matching

Using the representation of Wp distances via inverse distribution functions, we
can express the problem of finding

argmin
g∈FV

W2
2(πg ∗ Ber, π̂)

in a very explicit manner. Consider the support vector µ∗ ∈ R2n of a measure
of the form πg ∗ Ber: If µ ∈ Rn is the support vector of πg, µ

∗ can easily be
computed from µ by concatenating µ + 1 and µ − 1 and sorting the entries of
the resulting vector in an increasing order. Using Theorem 1.1.2, we can then
calculate that it holds that

Wp
p(πg ∗ Ber, π̂) =

n∑

k=1

|πk − µ∗2k−1|p + |πk − µ∗2k|p.

Thus, the problem of finding the argmin can be formulated as the following
optimization problem:

For a given vector π ∈ Rn with increasing entries, find µ ∈ Rn that
minimizes

r(µ) :=

n∑

k=1

|πk − µ∗2k−1|p + |πk − µ∗2k|p,

where µ∗k is the order statistic on {µ1− 1, ...., µn− 1, µ1 + 1, ...., µn + 1}.

We suspect that the following might give an be an explicit solution to the
aforementioned optimization problem:
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Conjecture 1.4.1. Let Sn be the set of permutations of n elements. Let M
be the set of all empirical measures on n or fewer points. It might hold that

min
µ∈M

Wp
p(µ ∗ Ber, π) = min

σ∈Sn

n∑

i=1

∣∣∣∣∣

∣∣πi − πσ(i)

∣∣− 2

2

∣∣∣∣∣

p

.

A minimizing µ can easily be recovered from a minimizing σ by putting
µk =

πk+πσ(k)
2 for k = 1, ..., n. Computing a minimizing σ via brute force is

computationally quite expensive, though, as Sn has n! elements.

This conjecture is based on the following heuristic:
Write

π̂ =
n∑

i=1

1

n
δ{Yi} =

n∑

i=1

1

2n
δ{Yi} +

1

2n
δ{Yi}

and consider this as an empirical measure on 2n points. Convolving point
measures with Bernoulli noise gives us a measure of the form

δ{a} ∗ Ber =
1

2
δ{a−1} +

1

2
δ{a+1}.

If we have a measure of the from 1
2nδ{Y1}+ 1

2nδ{Y2} such that |Y1−Y2| ≈ 2, then
putting a point measure right in the middle of Y1 and Y2 and convolving it with
the Bernoulli distribution will generate a measure that is close in Wasserstein
distance to 1

2nδ{Y1} + 1
2nδ{Y2}:

Wp

(
1

n
δY1+Y2

2
∗ Ber,

1

2n
δ{Y1} +

1

2n
δ{Y2}

)
≈ 0.

For a given

π̂ =
n∑

i=1

1

2n
δ{Yi} +

1

2n
δ{Yi},

the idea is now to match the points Y1, ..., Yn into pairs (Y1, Yσ(1)), ..., (Y1n, Yσ(n))
such that the distance of the points in each pair is as close to 2 as possible.

One could get the idea that a collection of such pairs fulfills a certain sym-
metry relation, namely that if the pair (Yi, Yj) is part of an optimal matching,
then (Yj , Yi) is also part of the same matching. This is false, as the following
remark shows.

Remark 1.4.1. Let H := {σ ∈ Sn|σ is representable by disjoint 1- and 2-cycles}
be the set of permutations of n elements, which are involutions. It is insufficient
to restrict the search for a minimizing σ to H, i.e. it holds that

min
σ∈H

n∑

i=1

∣∣∣∣
πi − πσ(i) + 2

2

∣∣∣∣
p

6= min
σ∈H

n∑

i=1

∣∣∣∣
πi − πσ(i) + 2

2

∣∣∣∣
p

.

Proof. Consider

π̂ =
1

3
δ{0} +

1

3
δ{ 3

2} +
1

3
δ{ 5

2}.
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An optimal pairing using only involutions is given by (0, 3
2 ), ( 3

2 , 0), ( 5
2 ,

5
2 ). Putting

µ1 = 1
3δ{ 3

4} + 1
3δ{ 3

4} + 1
3δ{ 5

2} gives us

W1(µ1 ∗ Ber, π̂) =
1

3

1

4
+

1

3

1

4
+

1

3
· 2 =

10

12
.

On optimal pairing using arbitrary permutations is given by (0, 3
2 ), ( 3

2 ,
5
2 ), ( 5

2 , 0).
Putting µ2 = 1

3δ{ 3
4} + 1

3δ{2} + 1
3δ{ 5

4} gives us

W1(µ2 ∗ Ber, π̂) =
1

3

1

4
+

1

3

1

4
+

1

3
· 1 =

6

12
,

which of course is smaller than 10
12 .

For large n, we do not have a smart way of calculating an optimal permu-
tation σ. Instead, though, we observed that an approximate version of this
approach performs reasonably well:

Consider the vector Y = (Y1, ..., Yn) which denotes a random permutation of
the data {Y1, ..., Yn}. PutA1 := {Y1, ..., Yn} and put Yj1 = argminYj∈A1

||Y1 − Yj | − 2|.
Now inductively set Ai+1 = Ai\{Yi} and Yji := argminYj∈Ai ||Y1 − Yj | − 2|. We
then put

µmatch :=
n∑

i=1

1

n
δYi+Yji

2

and denote by g̃ the cumulative distribution function of µmatch, and the estima-
tor

gmatch := max{min{g̃, V },−V }.
The computational complexity of this process is of order O(n2). Consid-

ering the simplicity of this approach, the performance of this estimator in our
simulations was quite impressive. While for low n, the matching estimator was
generally outperformed by the gradient descent approach, the results for high
n were generally comparable in our simulations. Especially for high n, the
matching approach method required significantly less computation time than
the gradient descent approach.
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