Skip to contents

Printing method for optimal two-stage goldstandard designs

Usage

# S3 method for TwoStageGoldStandardDesign
print(x, ...)

Arguments

x

An object of class TwoStageGoldStandardDesign

...

additional parameters

Value

returns the input x invisibly. This functions is used for its side effects, i.e. printing design characteristics to the screen.

Examples

# Should take about 15 seconds.
# \donttest{
optimize_design_twostage(
  cT2 = 1,
  cP2 = quote(cP1),
  cC2 = quote(cC1),
  bTP1f = -Inf,
  bTC1f = -Inf,
  beta = 0.2,
  alternative_TP = 0.4,
  alternative_TC = 0,
  Delta = 0.2,
  binding_futility = TRUE,
  lambda = .9,
  kappa = 1,
  nloptr_opts = list(algorithm = "NLOPT_LN_SBPLX", ftol_rel = 1e-01)
)
#> 
 iteration: 1/100                                                                    cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.250000, 1.000000, 2.105099, 2.270933)                                      f(x) = 915.8373                                                             
 iteration: 2/100                                                                    cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.250000, 1.000000, 2.105099, 2.270933)                                      f(x) = 915.8373                                                             
 iteration: 3/100                                                                    cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.250000, 1.000000, 2.105099, 2.270933)                                      f(x) = 915.8373                                                             
 iteration: 4/100                                                                    cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.428125, 1.000000, 2.105099, 2.270933)                                      f(x) = 917.2013                                                             
 iteration: 5/100                                                                    cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.250000, 1.712500, 2.105099, 2.270933)                                      f(x) = 1022.588                                                             
 iteration: 6/100                                                                    cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.428125, 0.287500, 2.105099, 2.270933)                                      f(x) = 1412.46                                                              
 iteration: 7/100                                                                    cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.2945313, 1.3562500, 2.1050990, 2.2709330)                                  f(x) = 935.5908                                                             
 iteration: 8/100                                                                    cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3835937, 0.6437500, 2.1050990, 2.2709330)                                  f(x) = 963.2407                                                             
 iteration: 9/100                                                                    cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3167969, 1.1781250, 2.1050990, 2.2709330)                                  f(x) = 911.3385                                                             
 iteration: 10/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.1386719, 1.1781250, 2.1050990, 2.2709330)                                  f(x) = 1108.736                                                             
 iteration: 11/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.1050990, 2.2709330)                                  f(x) = 904.044                                                              
 iteration: 12/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.2139503, 2.2709330)                                  f(x) = 908.8018                                                             
 iteration: 13/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.1050990, 2.5041598)                                  f(x) = 907.0289                                                             
 iteration: 14/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 1.9962477, 2.5041598)                                  f(x) = 918.6257                                                             
 iteration: 15/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.1595246, 2.3292397)                                  f(x) = 903.9803                                                             
 iteration: 16/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.1595246, 2.0960129)                                  f(x) = 935.7317                                                             
 iteration: 17/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.1187054, 2.4021231)                                  f(x) = 903.2534                                                             
 iteration: 18/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.1731310, 2.4604297)                                  f(x) = 906.1748                                                             
 iteration: 19/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.1221070, 2.3183072)                                  f(x) = 902.9637                                                             
 iteration: 20/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.0812878, 2.3911905)                                  f(x) = 903.0437                                                             
 iteration: 21/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.0846894, 2.3073747)                                  f(x) = 902.7042                                                             
 iteration: 22/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.0676814, 2.2600005)                                  f(x) = 904.3596                                                             
 iteration: 23/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.1255086, 2.2344913)                                  f(x) = 906.9245                                                             
 iteration: 24/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.0923430, 2.3520157)                                  f(x) = 902.4161                                                             
 iteration: 25/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.0549254, 2.3410832)                                  f(x) = 903.1108                                                             
 iteration: 26/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.1053116, 2.3240012)                                  f(x) = 902.5799                                                             
 iteration: 27/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.1129652, 2.3686423)                                  f(x) = 902.6578                                                             
 iteration: 28/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.1058963, 2.3533254)                                  f(x) = 902.4788                                                             
 iteration: 29/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.0929276, 2.3813399)                                  f(x) = 902.7331                                                             
 iteration: 30/100                                                                   cP1 <- x[1L] cC1 <- x[2L] bTP1e <- x[3L] bTC1e <- x[4L]                             x = c(0.3557617, 1.0445312, 2.1022156, 2.3383359)                                  f(x) = 902.4439                                                             
#>  Optimization finished. Calculating final design with greater accuracy...
#> Sample sizes (stage 1): T: 209, P: 75, C: 219
#> Sample sizes (stage 2): T: 209, P: 75, C: 219
#> Efficacy boundaries (stage 1): Z_TP_e: 2.09234, Z_TC_e: 2.35202
#> Futility boundaries (stage 1): Z_TP_f: -Inf, Z_TC_f: -Inf
#> Efficacy boundaries (stage 2): Z_TP_e: 2.29395, Z_TC_e: 2.06436
#> Inverse normal combination test weights (TP): w1: 0.70711, w2: 0.70711
#> Inverse normal combination test weights (TC): w1: 0.70711, w2: 0.70711
#> Maximum overall sample size: 1006
#> Expected sample size (H1): 795.7
#> Expected sample size (H0): 1004.2
#> Expected placebo group sample size (H1): 89.4
#> Expected placebo group sample size (H0): 148.6
#> Objective function value: 905.7
#> (local) type I error for TP testing: 2.50%
#> (local) type I error for TC testing: 2.50%
#> Probability of futility stop (H1): 0.00%
#> Probability of futility stop (H0): 0.00%
#> Minimum conditional power: 0.00%
#> Power: 80.03%
#> Futility boundaries: binding
#> Futility testing method: always both futility tests
# }